Procedural & Prognostic Impact of OCT on Coronary Intervention

Takashi Akasaka, MD, PhD, FESC, FAPSC, FJCS Department of Cardiovascular Medicine Wakayama Medical University, Japan

TCTAP 2019, Seoul

Disclosure Statement of Financial Interest Takashi Akasaka, MD, PhD

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

- Grant/Research Support
- : Abbott Vascular Japan Boston Scientific Japan Nipro Inc. Terumo Inc.
- Consulting Fees/Honoraria : Abbott Vascular Japan Daiichi-Sankyo Pharma

Daiichi-Sankyo Pharmaceutical Inc. Nipro Inc. Terumo Inc.

ESC/EACTS GUIDELINES

2018 ESC/EACTS Guidelines on myocardial

revascularization

(Ger

Adna losef

Dirk (Swit

Docum

Co-ord (Norw

(Canac

Recommendations on intravascular imaging for procedural optimization

Wakayama Medical University

The Task Force on myocardial revascularization Society of Cardiology (ESC) and E Cardio-Thoracic Surgery (EACTS)

Developed with the special contrib Association for Percutaneous Care

Authors/Task Force Members: Franz-Josef (Germany), Miguel Sousa-Uva*¹ (EACTS ((Sweden), Fernando Alfonso (Spain), Adria (UK), Robert A. Byrne (Germany), Jean-P

ty of Cardiology (ESC) and European Asso io-Thoracic Surgery (EACTS)	Recommendations	C lass ^a	Level ^b	
loped with the special contribution of the I ciation for Percutaneous Cardiovascular In	IVUS or OCT should be considered in selected patients to optimize stent implantation. ^{603,612,651–653}	lla	В	
rs/Task Force Members: Franz-Josef Neumann* (ESC nany), Miguel Sousa-Uva ^{*1} (EACTS Chairperson) (Po en), Fernando Alfonso (Spain), Adrian P. Banning (U Robert A. Byrne (Germany), Jean-Philippe Collet (Fr	IVUS should be considered to optimize treatment of unprotected left main lesions. ³⁵	lla	в	© ESC 2018
Restenosis				F
DES are recommended for the treatment of in-stent restenosis of BN	1S or DES. ^{373,375,378,379}	1	Α	
Drug-coated balloons are recommended for the treatment of in-stent restenosis of BMS or DES. ^{373,375,378,379}			Α	
In patients with recurrent episodes of diffuse in-stent restenosis, CABG should be considered by the Heart Team over a new PCI attempt.			с	
IVUS and/or OCT should be considered to detect stent-related mechanical problems leading to restenosis.			с	

Coronary angio. (Pre PCI)

<u>PCI for #6-7</u>

EES : 2.5*26mm / 2.75*26mm (14atm.) Wakayama Medical University

Procedural Impact of OCT on Coronary Intervention

Angio-co-registration may allow us to understand the lesion and reference site on angiography and OCT at the same time.

Volumetric Stent Expansion Assessment

Nakamura D, et al. J Am Coll Cardiol Intv 2018;11:1467-1478

Representative Case with One Bifurcation

Normalized Expansion Index Value = $actual lumen area / ideal lumen area \times 100$

MEI = cross section with lowest expansion index along the entire stented segment

Nakamura D, et al. J Am Coll Cardiol Intv 2018;11:1467-1478

Correlation of %AS with Final FFR Value for Conventional Method and New Volumetric Method

Nakamura D, et al. J Am Coll Cardiol Intv 2018;11:1467-1478

sity

Post-treatment: Endpoint Assessment & Indicator Calculation of Stent Expansion: Taper Reference

- Calculation of ideal lumen frame by frame based on proximal & distal lumen
- Ideal lumen is demonstrated based in HK Model taking the branch diameter into account
- Stent expansion (EXP%) can be assessed frame by frame based on this ideal reference

Cross section with lowest expansion index along the entire stented segment EXP%= (Stent area/Reference area)

Post-treatment: Endpoint Assessment & Indicator Calculation of Stent Expansion: Taper Reference

- Calculation of ideal lumen frame by frame based on proximal & distal lumen
- Ideal lumen is demonstrated based in HK Model taking the branch diameter into account
- Stent expansion (EXP%) can be assessed frame by frame based on this ideal reference

Demonstration of stent expansion indicator

Demonstration of stent expansion indicator after auto-detection of stent

- Underexpansion is demonstrated by red color (default is set as 90%)
- Well expanded stent is demonstrated by white blue

Thresholds can be set individually 2 different (color) set is available

Procedural Impact of OCT on Coronary Intervention

- Angio-coregistration may allow us to understand the lesion and reference site on angiography and OCT at the same time.
- Newly developed expansion indicator can provide us the site and degree of under-expansion by color coded image.

Definition of incomplete stent appostion (ISA)

ROC curve analysis identified a maximum ISA distance of EES > 355μ m with as separating persistent from resolved ISA (sensitivity 100%, specificity 75%, area under the curve = 0.905; 95%CI, 0.812 to 0.999).

ROC curve analysis identified a maximum ISA distance of SES > 285μ m with as separating persistent from resolved ISA (sensitivity 93%, specificity 80%, area under the curve = 0.947; 95%CI, 0.878 to 1.015).

Shimamura K. et al, Eur Heart J CV Imaging 2015;16:23-28

New Development in OCT

3-D reconstruction and auto-detection of stent incomplete apposition can be demonstrated as fly through image by new OCT.

Procedural Impact of OCT on Coronary Intervention

- Angio-coregistration may allow us to understand the lesion and reference site on angiography and OCT at the same time.
- Newly developed expansion indicator can provide us the site and degree of under-expansion by color coded image.
- Apposition indicator demonstrates the site and degree of incomplete apposition by color coded bar and 3D-image.

New Development in OCT

Re-crossing wire position in the jailed side branch can be easily identified by newly developed OCT software and improvement of side branch KBT procedure could be expected by the guidance of new OCT.

Impact of the rewiring position Strut malapposition & shear stress

Comparison of % reduction of the side branch flow area

side branch flow area during follow up.

Wakayama Medical University

Onuma Y, et al. EuroInterv 2018, doi: 10.4244/EIJ-D-18-00391 Comparison among each jailed type

Stent design based on the rink position & wire re-cross point at bifurcation orifice

Optimal rewiring point in side branch ostium according to different configurations of overhanging struts

Relation between stent link & side branch orifice

Stent link did not locate at side branch orifice:

Link Free type

Optimal GW re-cross point: Distal cell close to carina

Link Free type

GW distal cell re-cross and KBT

Kissing ballooning

Optimal

Relation between stent link & side branch orifice

If the stent link locates closed to carina, it would be difficult to remove the jailed struts by KBT: Link connecting to carina type

Suboptimal

Link connecting to carina type

GW recross distal cell

GW recross proximal cell

suboptimal

Frequency of jailing configuration & GW rewiring position

Okamura T, et al. EuroIntervention 2018;13:e1785-e1793

Incidence of ISA at each segment

Okamura T, et al. EuroIntervention 2018;13:e1785-e1793

Angiographic ISR at 9 Month

Okamura T, et al. EuroIntervention 2018;13:e1785-e1793

	All	Optimal	Suboptimal	P value
n	87	48	39	
ISR	12(13.8%)	4(8.3%)	8(20.5%)	0.1254
ΡΜν	0(0%)	0(0%)	0(0%)	-
DMV	1(1.1%)	1(2.1%)	0(0%)	1.0000
Side Br Orifice	12(13.8%)	4(8.3%)	8(20.5%)	0.1254

Japanese registry for 3-D OCT guided bifurcation stenting

Study population

600 bifurcation lesions

Side branch opening guided by 3-D OCT:400 Optimal Suboptimal

No side branch opening:200

Primary endpoint

Incidence of side branch restenosis at 1 year.

Secondary endpoint

MACE at 3 years

<u>PI</u>

Dr. Junya Shite (Osaka Nakatsu Saiseikai Hospital)

Improvement of auto detection of 2nd GW at bifurcation site

• Detection of 2nd GW to side branch improves significantly, and wire position is visualize more easily compared with the present system

Present

Wakayama Medical University

AptiVue

Improvement of 3-D stent rendering demonstration

Clear demonstration of stent strut & side branch wire by using bifurcation mode

Present

AptiVue

Procedural Impact of OCT on Coronary Intervention

- Angio-coregistration may allow us to understand the lesion and reference site on angiography and OCT at the same time.
- Newly developed expansion indicator can provide us the site and degree of under-expansion by color coded image.
- Apposition indicator demonstrates the site and degree of incomplete apposition by color coded bar and 3D-image.
- 3D-reconstruction image might indicate the strut & rink position on the side-branch orifice precisely and demonstrate the relation between side-branch wire and stent cell in detail.

Case; 60's y.o. Female (Effort AP, Colon cancer)

Non-stent strategy was selected because of colon cancer ope. Wakayama Medical University

Broken calcium plate

Broken calcium plate

Broken calcium plate

Broken calcium plate

Broken calcium plate

Stent malappsoition

Prediction of calcium plate fracture by ballooning

OFDI was performed to assess vascular response immediately after high pressure ballooning in 61 patients with severe calcified coronary lesion.

Conclusion: A calcium plate thickness < 505 µm was the corresponding cut-off value for predicting calcium plate fracture by high pressure ballooning.

Kubo, Akasaka et al. JACC Imag 2015;8:1228-9

Stent expansion at post-PCI Minimum stent area Stent expansion index p = 0.047p = 0.030 (mm^2) 1.2 6 5.02 ± 1.43 8.0 0.88 ± 0.17 4 4.33 ± 1.22 0.78 ± 0.18 0.6 0.4 2 0.2 0 0 Calcium fracture (+) Calcium fracture (-) Calcium fracture (+) Calcium fracture (-)

(n = 29)

Minimum stent area and stent expansion index were significantly greater in the group with calcium fracture compared with the group without calcium fracture.

(n = 29)

Kubo, Akasaka et al. JACC Imag 2015;8:1228-9

(n = 32)

Wakayama Medical University

(n = 32)

Restenosis and TLR at 10 months follow-up

The frequency of binary restenosis and target lesion revascularization was significantly lower in the group with calcium fracture compared with the group without calcium fracture.

Kubo, Akasaka et al. JACC Imag 2015;8:1228-9

Procedural Impact of OCT on Coronary Intervention

- Angio-coregistration may allow us to understand the lesion and reference site on angiography and OCT at the same time.
- Newly developed expansion indicator can provide us the site and degree of under-expansion by color coded image.
- Apposition indicator demonstrates the site and degree of incomplete apposition by color coded bar and 3D-image.
- 3D-reconstruction image might indicate the strut & rink position on the side-branch orifice precisely and demonstrate the relation between side-branch wire and stent cell in detail.
- Calcium distribution and thickness can be easily identified, and rotational athelectomy may be safely performed by OCT.

OCT- vs. angio-guided PCI with DES or BMS

The retrospective Centro per la Lotta contro l'Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study

Events at 1-year follow-up	Angiographic guidance group (n=335)	Angiographic plus OCT guidance group (n=335)	<i>p</i> -value
Death	23 (6.9%)	11 (3.3%)	0.035
Cardiac death	15 (4.5%)	4 (1.2%)	0.010
Myocardial infarction	29 (8.7%)	18 (5.4%)	0.096
Target lesion repeat revascularisation	11 (3.3%)	11 (3.3%)	1.0
Definite stent thrombosis	2 (0.6%)	1 (0.3%)	1.0
Cardiac death or myocardial infarction	43 (13.0%)	22 (6.6%)	0.006
Cardiac death, myocardial infarction, or repeat revascularisation	50 (15.1%)	32 (9.6%)	0.034

The use of OCT can improve clinical outcomes of patients undergoing PCI.

Prati F, et al., EuroIntervention 2012;8:823-829

Optimal vs Suboptimal OCT-guided PCI (CLI-OPCI ACS substudy)

		Patients With OCT Suboptimal Stent	Patients Without OCT Suboptimal Stent Deployment,		
	All Patients, 507	Deployment*, 280	227	HR (CI)	P Value
DoCE (%)	61 (12.0)	50 (17.9)	11 (4.8)	4.12 (2.1–7.9)	<0.001
Cardiac death (%)	14 (2.8)	12 (4.3)	2 (0.9)	5.42 (1.2-24.4)	0.028
Myocardial infarction (%)	42 (8.3)	33 (11.8)	9 (4.0)	3.27 (1.6–6.9)	0.002
Periprocedural	12 (2.4)	8 (2.9)	4 (1.8)	1.69 (0.5–5.6)	0.671
During follow-up	30 (5.9)	25 (8.9)	5 (2.2)	4.57 (1.7–12.0)	0.002
Target lesion revascularization (%)	37 (7.3)	31 (11.1)	6 (2.6)	4.76 (2.0–11.4)	<0.001
Stent thrombosis (%)	25 (4.9)	21 (7.5)	4 (1.8)	4.65 (1.6–13.6)	0.005
Acute	5 (1.0)	3 (1.1)	2 (0.8)	1.29 (0.2–7.7)	0.782
Subacute	16 (3.1)	14 (5.0)	1 (0.4)	11.81 (1.6–89.8)	0.017
Late	2 (0.4)	3 (1.1)	0 (0.0)	0.00 (0.0–0.0)	0.257
Very late	2 (0.4)	1 (0.3)	1 (0.4)	1.33 <mark>(</mark> 0.8–22.5)	0.843
Days of follow-up+	345 (219–540)	342 (205–540)	352 (230–540)		0.202

Cl indicates confidence interval; DoCE, hierarchical device-oriented cardiovascular events (cardiac death, target vessel myocardial infarction, and target lesion revascularization); HR, hazard ratio; and OCT, optical coherence tomography.

*Either in-stent minimum lumen area <4.5 mm², intrastent atherothrombotic tissue prolapse >500 μ m, dissection >200 μ m at the

distal stent edge, distal or proximal reference narrowing.

Prati F, et al. Circ CV Interv 2016;9:e003726.

SILV/

Angiography Alone Versus Angiography Plus Optical Coherence Tomography to Guide Percutaneous Coronary Intervention

Outcomes From the Pan-London PCI Cohort

Daniel A. Jones, MD, PHD,^a Krishnaraj S. Rathod, MD,^a Sudheer Koganti, MD,^a Stephen Zoe Astroulakis, MD, PHD,^c Pitt Lim, MD,^c Alexander Sirker, MD, PHD,^a Constantinos O' Ajay K. Jain, MD,^a Charles J. Knight, MD,^a Miles C. Dalby, MD,^d Iqbal S. Malik, MBBS, F Anthony Mathur, MD, PHD,^a Roby Rakhit, MD,^e Tim Lockie, MBCHB, PHD,^e Simon Redw Philip A. MacCarthy, MBCHB, PHD,^g Ranil Desilva, MD, PHD,^d Roshan Weerackody, MD, Andrew Wragg, MD, PHD,^a Elliot J. Smith, MD,^a Christos V. Bourantas, MD, PHD^a

Wakayama Medical University

Jones DA, et al., J Am Coll Cardiol Intv 201811:1313-1321

Angiography Alone Versus **Angiography Plus Optical Coherence Tomography to Guide Percutaneous Coronary Intervention**

Outcomes From the Pan-London PCI Cohort

Kaplan-Meier Curve Comparing All-Cause Mortality Among OCT-, IVUS- and Angio-guided PCI Zoe Astro **Acute Coronary Syndrome** Ajay K. Ja **Stable Coronary Artery Disease %** Cumulative incidence of all cause mortality (%) Anthony mortality Philip A. Andrew V 30-30-Angio Angio OCT OCT Cumulative incidence of all cause ---- IVUS ---- IVUS 20-20-10-10-365 730 1095 1460 1825 365 730 1095 1460 1825 Days Days Numbers at risk Numbers at risk Angio Only 43144 38185 33381 30130 26053 23765 Angio Only 31902 28083 23182 15765 21130 19053 **IVUS** 5911 4954 4358 3792 3135 2941 IVUS 5060 4254 3838 3272 2631 2242 OCT 662 371 301 540 496 405 OCT 487 420 389 314 261 201 Wakayama Medical University

Jones DA, et al., J Am Coll Cardiol Intv 201811:1313-1321

Take home message Procedural and Prognostic Impact of OCT on Coronary Intervention

- Several procedural advantages have been developed in OCT, and additional improvement in soft ware could be expected in the future in OCT.
- These development in OCT may allow us to perform PCI more easily and precisely.
- Although the improvement of prognosis has been reported by OCT-guided PCI at the moment, further improvement of PCI prognosis could be expected by newly developing OCT guidance.

Change Practice!! JCS2020

The 84th Annual Scientific Meeting of the Japanese Circulation Society

March 13(Fri)-15(Sun),2020

Kyoto International Conference Center
 Grand Prince Hotel Kyoto
 Congress Chairperson

Takeshi Kimura, M.D., Ph.D. Professor, Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto Read School of Medicine, Store

Evolution & Collaboration APSC2020 Asian Pacific Society of Cardiology Congress 2020 March 12(Thu)-14(Sat),2020 Venue

 Kyoto International Conference Center
 Grand Prince Hotel Kyoto Congress Chairperson
 Takashi Akasaka, M.D., Ph.D.
 Professor, Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama

Congress Secretariat c/o Congress Corporation 3-6-13 Awajimachi, Chuo-ku, Osaka 541-0047, Japan Tel:+81-6-6229-2555 Fax: +81-6-6229-2556 E-mail: jcs2020@congre.co.jp / apsc2020@congre.co.jp

Thank you for your kind attention !!

Welcome to APSC 2020 in Kyoto, Japan!!